Impaired Pulmonary Arterial Vasoconstriction and Nitric Oxide-Mediated Relaxation Underlie Severe Pulmonary Hypertension in the Sugen-Hypoxia Rat Model.
نویسندگان
چکیده
Pulmonary vasoreactivity could determine the responsiveness to vasodilators and, in turn, the prognosis of pulmonary hypertension (PH). We hypothesized that pulmonary vasoreactivity is impaired, and we examined the underlying mechanisms in the Sugen-hypoxia rat model of severe PH. Male Sprague-Dawley rats were injected with Sugen (20 mg/kg s.c.) and exposed to hypoxia (9% O2) for 3 weeks, followed by 4 weeks in normoxia (Su/Hx), or treated with Sugen alone (Su) or hypoxia alone (Hx) or neither (Nx). After hemodynamic measurements, the heart was assessed for right ventricular hypertrophy (Fulton's index); the pulmonary artery, aorta, and mesenteric arteries were isolated for vascular function studies; and contractile markers were measured in pulmonary arteries using quantitative polymerase chain reaction (PCR). Other rats were used for morphometric analysis of pulmonary vascular remodeling. Right ventricular systolic pressure and Fulton's index were higher in Su/Hx versus Su, Hx, and Nx rats. Pulmonary vascular remodeling was more prominent in Su/Hx versus Nx rats. In pulmonary artery rings, contraction to high KCl (96 mM) was less in Su/Hx versus Nx and Su, and phenylephrine-induced contraction was reduced in Su/Hx versus Nx, Hx, and Su. Acetylcholine (ACh)-induced relaxation was less in Su/Hx versus Nx and Hx, suggesting reduced endothelium-dependent vasodilation. ACh relaxation was inhibited by nitric oxide synthase (NOS) and guanylate cyclase blockade in all groups, suggesting a role of the NO-cGMP pathway. Nitrate/nitrite production in response to ACh was less in Su/Hx versus Nx, supporting reduced endothelial NO production. Sodium nitroprusside (10-8 M) caused less relaxation in Su/Hx versus Nx, Hx, and Su, suggesting a decreased responsiveness of vascular smooth muscle (VSM) to vasodilators. Neither contraction nor relaxation differed in the aorta or mesenteric arteries of all groups. PCR analysis showed decreased expression of contractile markers in pulmonary artery of Su/Hx versus Nx. The reduced responsiveness to vasoconstrictors and NO-mediated vasodilation in the pulmonary, but not systemic, vessels may be an underlying mechanism of severe PH in Su/Hx rats and appears to involve attenuation of the NO relaxation pathway and a switch of pulmonary VSM cells to a synthetic less reactive phenotype.
منابع مشابه
Rho kinase-mediated vasoconstriction is important in severe occlusive pulmonary arterial hypertension in rats.
Vascular remodeling, rather than vasoconstriction, is believed to account for high vascular resistance in severe pulmonary arterial hypertension (PAH). We have found previously that acute Rho kinase inhibition nearly normalizes PAH in chronically hypoxic rats that have no occlusive neointimal lesions. Here we examined whether Rho kinase-mediated vasoconstriction was also important in a rat mode...
متن کاملImpaired vasoconstriction and nitric oxide-mediated relaxation in pulmonary arteries of hypoxia- and monocrotaline-induced pulmonary hypertensive rats.
Pulmonary hypertension (PH) is a life-threatening disease with unclear vascular mechanisms. We tested whether PH involves abnormal pulmonary vasoconstriction and impaired vasodilation. Male Sprague-Dawley rats were exposed to hypoxia (9% O(2)) for 2 weeks or injected with single dose of monocrotaline (MCT, 60 mg/kg s.c.). Control rats were normoxic or injected with saline. After the hemodynamic...
متن کاملEndothelin B receptor deficiency potentiates ET-1 and hypoxic pulmonary vasoconstriction.
Endothelin (ET)-1 contributes to the regulation of pulmonary vascular tone by stimulation of the ET(A) and ET(B) receptors. Although activation of the ET(A) receptor causes vasoconstriction, stimulation of the ET(B) receptors can elicit either vasodilation or vasoconstriction. To examine the physiological role of the ET(B) receptor in the pulmonary circulation, we studied a genetic rat model of...
متن کاملApelin and pulmonary hypertension
Pulmonary arterial hypertension (PAH) is a devastating disease characterized by pulmonary vasoconstriction, pulmonary arterial remodeling, abnormal angiogenesis and impaired right ventricular function. Despite progress in pharmacological therapy, there is still no cure for PAH. The peptide apelin and the G-protein coupled apelin receptor (APLNR) are expressed in several tissues throughout the o...
متن کاملChronic O2 exposure in the newborn rat results in decreased pulmonary arterial nitric oxide release and altered smooth muscle response to isoprostane.
Chronic oxygen exposure in the newborn rat results in lung isoprostane formation, which may contribute to the pulmonary hypertension evident in this animal model. The purpose of this study was to investigate the pulmonary arterial smooth muscle responses to 8-iso-prostaglandin F(2alpha) (8-iso-PGF(2a)) in newborn rats exposed to 60% O2 for 14 days. Because, in the adult rat, 8-iso-PGF(2alpha) m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 364 2 شماره
صفحات -
تاریخ انتشار 2018